edexcel

Mark Scheme (Results)
November 2012

GCSE Physics
5PH1H/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2012
Publications Code UG034064
All the material in this publication is copyright
© Pearson Education Ltd 2012

GCSE Physics 5PH1H/ 01 Mark Scheme - November 2012

Question Number	Answer	Acceptable answers	Mark
1(a)		Two lines from a use negates that use	(3)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b)}$	An explanation including :		
	(all e-m waves) have same speed (1)	(from equation) same speed and same distance $=$ same time $3 \times 10^{8} \mathrm{~m} / \mathrm{s} /$ speed of light	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c)}$	C		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (d)}$	substitution ie $(v=) 1.5 \times 10^{17} \times 2 \times 10^{-9}$ evaluation ie $(\mathrm{v}=) 3 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad(1)$	[Remember that equations, including $v=\mathrm{f} \lambda$ are given on page 2. Please do not credit]	Give full marks for correct answer, no working $3 \times$ any other power of $10=1$ mark

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i)}$	A		(1)

Question Number	Answer	Acceptable answers	Mark
2(a)(ii)	An explanation linking the following: •is lorgy / heat / radiation \} is (1) (heat lost) = heat gained / absorbed (1) rate (of heat loss) = rate (of heat gained) (1)	power lost = power gained =3 description of dynamic equilibrium =3	Ignore references to boiling water

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i)}$	D		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i i)}$	substitution (1)	Ignore powers of 10 until evaluation	
	$5000000 / 21700$	evaluation (1)	230.4 W Give full marks for correct answer, no working $2.3 \times$ any other power of $10=1$ mark

Question Number	Answer	Acceptable answers	Mark
2(b)(iii)	substitution (1)	$5 \times 100 / 25$ evaluation (1) $20(\%)$	0.2, $1 / 5$ Give full marks for correct answer, no working $2 \times$ any other power of $10=1$ mark e.g. 200, $1 / 500$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a) (i)}$	B		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a) (i i)}$	C		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (b)}$	A description including:	Ignore moving paper or lens	
- measuring the \{distance / space\} (1) between lens and \{paper / image\} (1)	Ignore mention of focal point	(2)	

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{3 (c)}$	An explanation linking any two of the following \bullet moon(s) (1)	(appear to) orbit J upiter (not Earth) (1)	Idea of movement near Jupiter		
- (therefore) not everything					
orbits the Earth (1)				\quad	'geocentric theory is wrong' (1)
:---					
ignore: \{orbits the Sun / does					
not orbit the Earth\}					
ignore: Heliocentric is correct					
ignore: Earth not centre of					
Universe					
ignore: retrograde motion	\quad (2)				
:---					

Question Number	Answer	Acceptable answers	Mark
$3(\mathrm{~d})$	rearrangement (1) ie fe $=\mathrm{fo} / \mathrm{M}$	rearrangement and substitution in either order	
	substitution (1) ie (fe $=$) $110 / 40$ evaluation (1) ie (fe $=$) $2.8(\mathrm{~cm})$	appropriate substitution after writing incorrect rearrangement [e.g. M/fo $=40 / 110=1$ mark only $]$	2.75(cm) Give full marks for correct answer, no working

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (a) (i)}$	C		(1)

Question Number	Answer	Acceptable answers	Mark
4(a)(ii)	Any continuous line which has a section above and below the time axis without going (deliberately) back in time	Fractions of a cycle that meet the criteria Ignore anything appearing after the arrow on the time axis	(1)

Question Number	Answer	Acceptable answers	Mark
4(b)	$\begin{aligned} & \text { substitution (1) } \\ & 2400 / 200=230 / \mathrm{V}_{\mathrm{s}} \\ & \text { transposition (1) } \\ & \left(\mathrm{V}_{\mathrm{s}}=\right) 230 \times 200 / 2400 \\ & \text { Evaluation (1) } \\ & \left(\mathrm{V}_{\mathrm{s}}=\right) 19(\mathrm{~V}) \end{aligned}$	substitution and transposition in either order 230/12 = 2 marks (s\&t) 200/10.43 = 2 marks (s\&t) 19.2 (V) 19.17 (V) Give full marks for correct answer, no working 1.9 x any other power of $10=2$	(3)

Question Number	Answer	Acceptable answers	Mark
4(c)(i)	An explanation linking any three of the following - step-up transformer(s) (1) - increase voltages (1) - (this) reduces the current (1) - (which) reduces the \{heat / thermal\} \{energy / power\} losses (1)	Assume 'they' refers to transformers 'steps up the voltage’ scores second MP only Reject for MP2 and MP3: 'increases voltage and current.' but beware: 'increases voltage and current decreases' $=2$ marks ignore unqualified energy losses Allow reverse arguments for last two points, e.g. high current wastes more heat energy $=2$ marks Ignore references to efficiency ignore step-down statements except where they contradict	(3)

Question Number	Answer	Acceptable answers	Mark
4(c)(ii)	An explanation linking two of the following - $\{$ kite / string $\}$ touching the power line (1) - \{movement of charge / current $\}$ (1) - (electricity) \{to earth / through the kite-flyer\} (1) - giving (the kite-flyer) an electric shock (1)	anything which implies contact for touching eg 'caught up in' spark ignore energy ignore electricity to ground needs idea of 'through' not 'into' the person ignore 'completing the circuit' electrocution stopping heart	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i)}$	B		(1)

Question Number	Answer	Acceptable answers	Mark
5(a)(ii)	An explanation linking - $\{\mathrm{X}$ - rays are / ultrasound is not $\}$ dangerous (1) - (because X-rays) can \{damage / harm\} \{tissue / DNA\} OR mutate cells OR reverse argument for ultrasound (1)	X-rays are ionising / ultrasound is not ionising ignore penetration/ penetrating ignore bald harm / harmful for MP1 I gnore reference to frequency and energy X-rays cause cancer ignore foetus / baby / body Ignore unqualified 'mutation'	(2)

Question Number	Answer	Acceptable answers	Mark
5(b) (i)	$30000 \mathrm{~Hz} /$ hertz	30 kHz	
		0.03 MHz	
unit must be included	(1)		

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (b) (i i)}$	A description including particles \{vibrate / oscillate\} (1)	'they' refers to particles	
	(move) in the \{same direction as / parallel to the direction \} the wave travels (1)	to and fro back and forth ignore all up and down and side to side references	Both points could be shown on a clear diagram with arrows or labels (e.g. compressions and rarefactions)

Question Number		Indicative Content	Mark
QWC	*5(c)	An explanation including some of the following points - sonar is ultrasound - travels through water at the speed of sound ($1500 \mathrm{~m} / \mathrm{s}$) - ultrasound signal generated in the ship - signal emitted from the bottom of the ship - signal travels down through the water	
- strikes shoal of fish			
- signal reflected by fish			
- reflected signal detected on the ship			
- time between emission and detection measured			

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (a) (i)}$	Any one of \bullet radio \bullet visible \bullet microwave	• infrared / IR • ultraviolet / UV	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (a) (\text { ii) }}$	Any one of \bullet X-ray \bullet gamma ray \bullet far infrared	• infrared / IR • ultraviolet / UV	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (b) (i)}$	$\mathrm{N}=39$ (A.U.) (1) $\mathrm{P}=77$ (A.U.) (1)	range 38-39 inclusive range 76-78 inclusive	(2)

Question Number	Answer	Acceptable answers	Mark
6(b)(ii)	An explanation linking - actual value for Neptune is \{different from / lower than\} predicted value (1) with one of these - (so) the rule does not work (for Neptune) (1) - the rule gives too high a value (1) - (so) Neptune might have been \{captured / entered\} from outside the original Solar System (1)	actual value for Neptune put on to chart by cross or dot etc. (no need for label) (1) (Neptune) is an anomaly ignore references to age of Neptune	(2)

Question Number		Indicative Content ${ }^{\text {a }}$ Mark
QWC	* 6(c)	A discussion including some of the following points - Methods o space probes o soil experiments by landers o SETI o telescopes o robotic machines - Problems - expense / international collaboration needed - large distances involved o if problem difficult to correct o time to react to problem is long o time to respond to any communication would be long o complex technology - for human visit - for robot investigation - fuel - recognition of alternative life-forms - pattern recognition o for SETI o communication if intelligent life-form - possibility of cross-contamination
Level	0	No rewardable content
1	1-2	a limited discussion including EITHER two named problems, OR two named methods, OR a named problem + a named method e.g. It would be expensive and the distances are large OR Space probes and SETI can be used OR can listen for communications, life beyond Earth may not be water based. the answer communicates ideas using simple language and uses limited scientific terminology. spelling, punctuation and grammar are used with limited accuracy.
2	3-4	- a simple discussion including EITHER a problem with its associated method + some other named problem OR a detailed problem + one other named problem e.g. It is expensive to send a space probe to Mars; the distance to Mars very large OR It is difficult to search through the data from space because there is a huge amount of it. Also, any message would be hard to decode. - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately. - spelling, punctuation and grammar are used with some accuracy.

3	5-6	-a detailed discussion including EITHER two problems with their associated method(s) + some other named problem OR two detailed problems + one other named problem OR a problem with its associated method + detailed problem + one other named problem e.g. We can analyse radiowaves from space, but they take so long to arrive that the aliens that sent them could have already died out. It is very expensive to develop the technology needed to go to other planets. Also, we might not recognise alien life-forms there. OR It is difficult to search through the data from space because there is a huge amount of it. Radiowaves in space take a long time to arrive because the distances are so vast. It all costs a lot of money. OR It is very expensive to develop the technology needed to go to other planets. It is difficult to search through the data from space because there is a huge amount of it. Also, we might not recognise alien life-forms there. the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately. spelling, punctuation and grammar are used with few errors.

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG034064 November 2012

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

